Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

URL has been copied successfully!
Implementing Cryptography in AI Systems
URL has been copied successfully!

Collecting Cyber-News from over 60 sources

Implementing Cryptography in AI Systems

Interesting research: “How to Securely Implement Cryptography in Deep Neural Networks.”

Abstract: The wide adoption of deep neural networks (DNNs) raises the question of how can we equip them with a desired cryptographic functionality (e.g, to decrypt an encrypted input, to verify that this input is authorized, or to hide a secure watermark in the output). The problem is that cryptographic primitives are typically designed to run on digital computers that use Boolean gates to map sequences of bits to sequences of bits, whereas DNNs are a special type of analog computer that uses linear mappings and ReLUs to map vectors of real numbers to vectors of real numbers. This discrepancy between the discrete and continuous computational models raises the question of what is the best way to implement standard cryptographic primitives as DNNs, and whether DNN implementations of secure cryptosystems remain secure in the new setting, in which an attacker can ask the DNN to process a message whose “bits” are arbitrary real numbers…

First seen on securityboulevard.com

Jump to article: securityboulevard.com/2025/02/implementing-cryptography-in-ai-systems/

Loading

Share via Email
Share on Facebook
Tweet on X (Twitter)
Share on Whatsapp
Share on LinkedIn
Share on Xing
Copy link